Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.181
Filtrar
1.
Biophys Chem ; 309: 107232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593533

RESUMO

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Conformação Proteica
2.
Commun Biol ; 7(1): 366, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531947

RESUMO

The flagellar type III secretion system (fT3SS) switches substrate specificity from rod-hook-type to filament-type upon hook completion, terminating hook assembly and initiating filament assembly. The C-terminal cytoplasmic domain of FlhA (FlhAC) forms a homo-nonameric ring and is directly involved in substrate recognition, allowing the fT3SS to coordinate flagellar protein export with assembly. The highly conserved GYXLI motif (residues 368-372) of FlhAC induces dynamic domain motions of FlhAC required for efficient and robust flagellar protein export by the fT3SS, but it remains unknown whether this motif is also important for ordered protein export by the fT3SS. Here we analyzed two GYXLI mutants, flhA(GAAAA) and flhA(GGGGG), and provide evidence suggesting that the GYXLI motif in FlhAC requires the flagellar ATPase complex not only to efficiently remodel the FlhAC ring structure for the substrate specificity switching but also to correct substrate recognition errors that occur during flagellar assembly.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Salmonella , ATPases Translocadoras de Prótons/metabolismo
3.
J Plant Physiol ; 296: 154225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522214

RESUMO

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Assuntos
Arabidopsis , Compostos de Diazônio , Isoleucina/análogos & derivados , Piridinas , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Concentração de Íons de Hidrogênio
4.
ACS Infect Dis ; 10(4): 1185-1200, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38499199

RESUMO

New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Íons/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/metabolismo
5.
Protein Sci ; 33(4): e4942, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501464

RESUMO

IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the ß subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the ß subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .


Assuntos
Bacillus , ATPases Translocadoras de Prótons , Animais , Bovinos , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Proteínas/química , Bactérias/metabolismo , Mitocôndrias/metabolismo , Bacillus/genética , Trifosfato de Adenosina/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(11): e2314199121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451940

RESUMO

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Prótons , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Conformação Proteica , Trifosfato de Adenosina , Rotação , ATPases Translocadoras de Prótons/metabolismo
7.
Curr Biol ; 34(7): 1479-1491.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490203

RESUMO

NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
8.
Commun Biol ; 7(1): 150, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316905

RESUMO

Plants rely on precise regulation of their stomatal pores to effectively carry out photosynthesis while managing water status. The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical light signaling repressor, is known to repress stomatal opening, but the exact cellular mechanisms remain unknown. Here, we show that COP1 regulates stomatal movement by controlling the pH levels in guard cells. cop1-4 mutants have larger stomatal apertures and disrupted pH dynamics within guard cells, characterized by increased vacuolar and cytosolic pH and reduced apoplastic pH, leading to abnormal stomatal responses. The altered pH profiles are attributed to the increased plasma membrane (PM) H+-ATPase activity of cop1-4 mutants. Moreover, cop1-4 mutants resist to growth defect caused by alkali stress posed on roots. Overall, our study highlights the crucial role of COP1 in maintaining pH homeostasis of guard cells by regulating PM H+-ATPase activity, and demonstrates how proton movement affects stomatal movement and plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas , Ubiquitina-Proteína Ligases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Luz , Estômatos de Plantas/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Nat Commun ; 15(1): 1194, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378616

RESUMO

Plasma membrane (PM) H+-ATPase is crucial for light-induced stomatal opening and phosphorylation of a penultimate residue, Thr948 (pen-Thr, numbering according to Arabidopsis AHA1) is required for enzyme activation. In this study, a comprehensive phosphoproteomic analysis using guard cell protoplasts from Vicia faba shows that both red and blue light increase the phosphorylation of Thr881, of PM H+-ATPase. Light-induced stomatal opening and the blue light-induced increase in stomatal conductance are reduced in transgenic Arabidopsis plants expressing mutant AHA1-T881A in aha1-9, whereas the blue light-induced phosphorylation of pen-Thr is unaffected. Auxin and photosynthetically active radiation induce the phosphorylation of both Thr881 and pen-Thr in etiolated seedlings and leaves, respectively. The dephosphorylation of phosphorylated Thr881 and pen-Thr are mediated by type 2 C protein phosphatase clade D isoforms. Taken together, Thr881 phosphorylation, in addition of the pen-Thr phosphorylation, are important for PM H+-ATPase function during physiological responses, such as light-induced stomatal opening in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fosforilação , Luz , Estômatos de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo
10.
Nat Commun ; 15(1): 1195, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378726

RESUMO

Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosforilação , Luz , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/metabolismo
11.
Environ Sci Pollut Res Int ; 31(13): 20133-20148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372914

RESUMO

Microcystins (MCs) are the most widespread and hazardous cyanotoxins posing a huge threat to agro-ecosystem by irrigation. Some adaptive metabolisms can be initiated at the cellular and molecular levels of plant to survive environmental change. To find ways to improve plant tolerance to MCs after recognizing adaptive mechanism in plant, we studied effects of MCs on root morphology, mineral element contents, root activity, H+-ATPase activity, and its gene expression level in cucumber during exposure and recovery (without MCs) periods. After being exposed to MCs (1, 10, 100 and 1000 µg L-1) for 7 days, we found 1 µg L-1 MCs did not affect growth and mineral elements in cucumber. MCs at 10 µg ·L-1 increased root activity and H+-ATPase activity partly from upregulation of genes (CsHA2, CsHA3, CsHA8, and CsHA9) expression, to promote nutrient uptake. Then, the increase in NO3-, Fe, Zn, and Mn contents could contribute to maintaining root growth and morphology. Higher concentration MCs (100 or 1000 µg L-1) inhibited root activity and H+-ATPase activity by downregulating expression of genes (CsHA2, CsHA3, CsHA4, CsHA8, CsHA9, and CsHA10), decreased contents of nutrient elements except Ca largely, and caused root growing worse. After a recovery, the absorption activity and H+-ATPase activity in cucumber treated with10 µg L-1 MCs were closed to the control whereas all parameters in cucumber treated 1000 µg L-1 MCs were even worse. All results indicate that the increase in H+-ATPase activity can enhance cucumber tolerance to MC stress by regulating nutrient uptake, especially when the MCs occur at low concentrations.


Assuntos
Cucumis sativus , Microcistinas/metabolismo , Ecossistema , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/metabolismo , Minerais/metabolismo , Raízes de Plantas/metabolismo
12.
Biochim Biophys Acta Bioenerg ; 1865(2): 149034, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354879

RESUMO

Proton FOF1-ATPase is the key enzyme in E. coli under fermentative conditions. In this study the role of E. coli proton ATPase in the µ and formation of metabolic pathways during the fermentation of mixture of glucose, glycerol and formate using the DK8 (lacking FOF1) mutant strain was investigated. It was shown that the contribution of FOF1-ATPase in the specific growth rate was ∼45 %. Formate was not taken up in the DK8 strain during the initial hours of the growth. The utilization rates of glucose and glycerol were unchanged in DK8, however, the production of succinate, lactate and ethanol was decreased causing a reduction of the redox state up to -450 mV. Moreover, the contribution of FOF1-ATPase in the interplay between H+ and H2 cycles was described depending on the bacterial growth phase and main utilizing substrate. Besides, the H2 production rate in the DK8 strain was decreased by ∼60 % at 20 h and was absent at 72 h. Δp was decreased from -157 ± 4.8 mV to -140 ± 4.2 mV at 20 h and from -195 ± 5.9 mV to -148 ± 4.4 mV at 72 h, compared to WT. Taken together it can be concluded that during fermentation of mixed carbon sources metabolic cross talk between FOF1-ATPase-TrkA-Hyd-Fdh-H is taking place for maintaining the cell energy balance via regulation proton motive force.


Assuntos
Escherichia coli , Força Próton-Motriz , Fermentação , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Prótons , Glicerol/metabolismo , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Glucose/metabolismo
13.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366380

RESUMO

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Assuntos
Compostos de Amônio , Populus , Nitratos/metabolismo , Cloreto de Sódio/farmacologia , Populus/metabolismo , Raízes de Plantas/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Membrana Transportadoras , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/farmacologia , Nitrogênio/metabolismo
14.
Mol Microbiol ; 121(4): 781-797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242855

RESUMO

Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.


Assuntos
Candida glabrata , Fluconazol , Fluconazol/metabolismo , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Azóis , ATPases Translocadoras de Prótons/metabolismo , Testes de Sensibilidade Microbiana
15.
J Agric Food Chem ; 72(3): 1527-1538, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193425

RESUMO

An estimated 240 fungicides are presently in use, but the direct targets for the majority remain elusive, constraining fungicide development and efficient resistance monitoring. In this study, we found that Pcα-actinin knockout did not influence the sensitivity of Phytophthora capsici to fluopicolide, which is a notable oomycete inhibitor. Using a combination of Bulk Segregant Analysis Sequencing and Drug Affinity Responsive Target Stability (DARTS) assays, the vacuolar H+-ATPase subunit a (PcVHA-a) was pinpointed as the target protein of fluopicolide. We also confirmed four distinct point mutations in PcVHA-a responsible for fluopicolide resistance in P. capsici through site-directed mutagenesis. Molecular docking, ATPase activity assays, and a DARTS assay suggested a fluopicolide-PcVHA-a interaction. Sequence analysis and further molecular docking validated the specificity of fluopicolide for oomycetes or fish. These findings support the claim that PcVHA-a is the target of fluopicolide, proposing vacuolar H+-ATPase as a promising target for novel fungicide development.


Assuntos
Fungicidas Industriais , Phytophthora , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Benzamidas/metabolismo , Phytophthora/genética , ATPases Translocadoras de Prótons/metabolismo , Doenças das Plantas
16.
Chemosphere ; 352: 141290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280649

RESUMO

The effect of boron (B) deficiency on mediating the contribution of H+-ATPase in the uptake and assimilation of exogenous cyanide (CN-) is investigated. Under CN- treatments, rice seedlings with B-deficient (-B) conditions exhibited significantly higher CN- uptake and assimilation rates than B-supplemented (+B) seedlings, whereas NH4+ uptake and assimilation rates were slightly higher in -B rice seedlings than in +B. In this connection, the expression pattern of genes encoding ß-CAS, ST, and H+-ATPase was assessed to unravel their role in the current scenario. The abundances of three ß-CAS isogenes (OsCYS-D1, OsCYS-D2, and OsCYS-C1) in rice tissues are upregulated from both "CN--B" and "CN-+B" treatments, however, only OsCYS-C1 in roots from the "CN--B" treatments was significantly upregulated than "CN-+B" treatments. Expression patterns of ST-related genes (OsStr9, OsStr22, and OsStr23) are tissue specific, in which significantly higher upregulation of ST-related genes was observed in shoots from "CN--B" treatments than "CN-+B" treatments. Expression pattern of 7 selected H+-ATPase isogenes, OsA1, OSA2, OsA3, OsA4, OsA7, OsA8, and OsA9 are quite tissue specific between "CN-+B" and "CN--B" treatments. Among these, OsA4 and OsA7 genes were highly activated in the uptake and assimilation of exogenous CN- in -B nutrient solution. These results indicated that B deficiency disturbs the pattern of N cycles in CN--treated rice seedlings, where activation of ST during CN- assimilation decreases the flux of the innate pool of NH4+ produced from CN- assimilation by the ß-CAS pathway in plants. Collectively, the B deficiency increased the uptake and assimilation of exogenous CN- through activating H+-ATPase.


Assuntos
Cianetos , Oryza , Oryza/metabolismo , Boro/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/farmacologia , Plântula/metabolismo , Membrana Celular , Raízes de Plantas/metabolismo
17.
Biochem Biophys Res Commun ; 696: 149507, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38237234

RESUMO

Plant elicitor peptide 1 (Pep1) is one of plant-derived damage-associated molecular patterns (DAMPs) involved in the regulation of multiple biological processes, including immune response and root growth. The exogenous application of Pep1 was shown to inhibit root growth by affecting the auxin content and extracellular pH level in the transition zone (TZ). However, the signaling relationship between extracellular pH and auxin in Pep1-regulated root growth inhibition has not been explored. Our study here suggested that both pH signaling and auxin signaling were responsible for Pep1-regulated root growth inhibition, and the Pep1-induced auxin accumulation in TZ depended on apoplastic acidification. To increase the apoplastic pH in TZ, we mutated the AHA2 and found that the mutants of aha2-4 and pin2aha2-4 both reduced Pep1-induced auxin content in TZ, thereby alleviating root growth inhibition. Thus, our results reveal a new auxin-pH signaling crosstalk mechanism in regulating root growth, and provide new insights into the function of Pep1 in regulating root growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Raízes de Plantas/metabolismo , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Regulação da Expressão Gênica de Plantas
18.
PLoS Genet ; 20(1): e1011121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227612

RESUMO

Plasma membrane (PM) H+-ATPases of the P-type family are highly conserved in yeast, other fungi, and plants. Their main role is to establish an H+ gradient driving active transport of small ions and metabolites across the PM and providing the main component of the PM potential. Furthermore, in both yeast and plant cells, conditions have been described under which active H+-ATPases promote activation of TORC1, the rapamycin-sensitive kinase complex controlling cell growth. Fungal and plant PM H+-ATPases are self-inhibited by their respective cytosolic carboxyterminal tails unless this domain is phosphorylated at specific residues. In the yeast H+-ATPase Pma1, neutralization of this autoinhibitory domain depends mostly on phosphorylation of the adjacent Ser911 and Thr912 residues, but the kinase(s) and phosphatase(s) controlling this tandem phosphorylation remain unknown. In this study, we show that S911-T912 phosphorylation in Pma1 is mediated by the largely redundant Ptk1 and Ptk2 kinase paralogs. Dephosphorylation of S911-T912, as occurs under glucose starvation, is dependent on the Glc7 PP1 phosphatase. Furthermore, proper S911-T912 phosphorylation in Pma1 is required for optimal TORC1 activation upon H+ influx coupled amino-acid uptake. We finally show that TORC1 controls S911-T912 phosphorylation in a manner suggesting that activated TORC1 promotes feedback inhibition of Pma1. Our results shed important new light on phosphoregulation of the yeast Pma1 H+-ATPase and on its interconnections with TORC1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo
19.
Biochemistry (Mosc) ; 88(10): 1488-1503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105019

RESUMO

Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.


Assuntos
Fotossíntese , ATPases Translocadoras de Prótons , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo
20.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139168

RESUMO

Plasma membrane H+-ATPases (PMAs) play an important role in the pathogenicity of pathogenic fungi. Lipid droplets are important storage sites for neutral lipids in fungal conidia and hyphae and can be used by plant pathogenic fungi for infection. However, the relationship between plasma membrane H+-ATPase, lipid droplets and virulence remains unclear. Here, we characterized a plasma membrane H+-ATPase, CsPMA2, that plays a key role in lipid droplet formation, appresorial development and virulence in C. siamense. Deletion of CsPMA2 impaired C. siamense conidial size, conidial germination, appressorial development and virulence but did not affect hyphal growth. ΔCsPMA2 increased the sensitivity of C. siamense to phytic acid and oxalic acid. CsPMA2 was localized to lipids on the plasma membrane and intracellular membrane. Deletion of CsPMA2 significantly inhibited the accumulation of lipid droplets and significantly affected the contents of some species of lipids, including 12 species with decreased lipid contents and 3 species with increased lipid contents. Furthermore, low pH can inhibit CsPMA2 expression and lipid droplet accumulation. Overall, our data revealed that the plasma membrane H+-ATPase CsPMA2 is involved in the regulation of lipid droplet formation and affects appressorial development and virulence in C. siamense.


Assuntos
Colletotrichum , Gotículas Lipídicas , Virulência , Gotículas Lipídicas/metabolismo , Proteínas Fúngicas/metabolismo , Lipídeos , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...